
 

 

 

 

 

 

 

 

 

 

 

 

Dre Tomoe Stampfli, 

Chairwoman Jury Fondation Coeur de la Tour 

Friday, 20 October 2023 

 

Cardiovascular Research Prize 

 

Dear Doctor Stampfli, dear members of the jury 

 

I would like to submit the manuscript “Artificial intelligence to improve ischemia prediction in 

Rubidium Positron Emission Tomography – A validation study” for consideration for the 

cardiovascular research prize. The paper has just been accepted in the EPMA journal (IF 6.5, Q1 in 

Medicine, Research & Experimental). 

With the increasing prevalence of coronary artery disease (CAD) globally, the demand for accurate 

diagnosis and risk stratification with non-invasive imaging techniques is rising. Consequently, this will 

lead to ever growing health care costs due to these expensive tests. Hence, cost-efficient diagnostic 

and risk stratification tools are becoming more and more important. Guidelines recommend referring 

patients to advanced cardiac tests according to their pre-test probability (PTP). However, this approach 

is imprecise resulting in a large proportion of the performed cardiac tests being normal. With an 

individualized PTP assessment, normal tests – and consequently unnecessary radiation exposure and 

costs – might be avoided.  

In the manuscript, we describe the performance of an artificial-intelligence (AI) based algorithm which 

incorporates variables from patients’ history, physical exam, ECG and biomarkers, and compare it 

with commonly used PTP tools for CAD. Using a sophisticated, individualized risk profile for every 

patient, the AI – based algorithm was the only model which correctly predicted very low pre-test 

probability of myocardial ischemia on PET. With its excellent sensitivity and negative predictive 

value, it would allow exclusion of ischemia with high certainty. Furthermore, it allocated patients more 

evenly across PTP categories and reduced patients with “intermediate PTP” by up to 51%. Therefore, 

this tool successfully reclassified patients and might be used as gatekeeper prior to advanced non-
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invasive testing. By maintaining the same diagnostic quality and safety, down-stream costs might be 

reduced using this AI-based approach.  

 

The data required for this AI algorithm are readily available to every general practitioner (GP) or 

cardiologist, and the test characteristics to exclude myocardial ischemia are excellent. This offers the 

opportunity to patients and their GPs and cardiologists to get a precise, cost-effective and 

individualized triage tool to avoid expensive, advanced cardiac tests. The tool was created with a novel, 

memetic pattern-based algorithm based on a meticulously characterized patient cohort.  

Our approach and results represent a big step towards personalized medicine in the risk stratification 

of CAD.  

 

I thank you and your team in advance for your time reviewing the application and would be honoured 

if the project would be rewarded with the “Coeur de la Tour” research prize. 
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Simon Frey, MD  
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Abstract and keywords 

Background 

Patients are referred to functional coronary artery disease (CAD) testing based on their pre-test 

probability (PTP) to search for myocardial ischemia. The recommended prediction tools 

incorporate three variables (symptoms, age, sex) and are easy to use, but have a limited 

diagnostic accuracy. Hence, a substantial proportion of non-invasive functional tests reveal no 

myocardial ischemia, leading to unnecessary radiation exposure and costs. Therefore, 

preselection of patients before ischemia testing needs to be improved using a more predictive 

and personalized approach. 

Aims 

Using multiple variables (symptoms, vitals, ECG, biomarkers), artificial intelligence-based 

tools can provide a detailed and individualized profile of each patient. This could improve PTP 

assessment and provide a more personalized diagnostic approach in the framework of 

predictive, preventive and personalized medicine (PPPM).  

Methods 

Consecutive patients (n=2417) referred for Rubidium-82 Position Emission Tomography were 

evaluated. PTP was calculated using the ESC 2013/2019 and ACC 2012/2021 guidelines, and 

a memetic pattern-based algorithm (MPA) was applied incorporating symptoms, vitals, ECG, 

and biomarkers. Five PTP categories from very low to very high PTP were defined (i.e., <5%, 

5-15%, 15-50%, 50-85%, >85%). Ischemia was defined as summed difference score (SDS) ≥2. 

Results 

Ischemia was present in 37.1%. The MPA model was most accurate to predict ischemia (AUC: 

0.758, p < 0.001 compared to ESC 2013: 0.661, ESC 2019: 0.673, ACC 2012: 0.585, ACC 

2021: 0.667). Using the <5% threshold, the MPA’s sensitivity and negative predictive value to 

rule-out ischemia were 99.1% and 96.4%, respectively. The model allocated patients more 

evenly across PTP categories, reduced the proportion of patients in the intermediate (15-85%) 

range by 29% (ACC 2012) - 51% (ESC 2019), and was the only tool to correctly predict 

ischemia prevalence in the very low PTP category.  

Conclusion 

The MPA model enhanced ischemia testing according to the PPPM framework:  

1) The MPA model improved individual prediction of ischemia significantly and could safely 

exclude ischemia based on readily available variables without advanced testing (“predictive”).  
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2) It reduced the proportion of patients in the intermediate PTP range. Therefore, it could be 

used as a gatekeeper to prevent patients from further, unnecessary downstream testing, radiation 

exposure and costs (“preventive”). 

3) Consequently, the MPA model could transform ischemia testing towards a more personalized 

diagnostic algorithm (“personalized”). 

 

Keywords 

coronary artery disease (CAD); pretest probability (PTP); patient stratification; risk 

stratification; ischemia; positron emission tomography (PET); artificial intelligence; predictive 

preventive personalised medicine (PPPM / 3PM); gatekeeper, improved individual outcome  
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Abbreviations 

ANN  = artificial neural network 

AUC  = area under the curve 

BMI  = body mass index 

CAC  = coronary artery calcification 

CAD  = coronary artery disease 

CACS  = coronary artery calcium score 

CTCA  = computed tomography coronary angiography 

DF  = Diamond-Forrester 

DOR  = diagnostic odds ratio 

FNR  = false negative rate 

FPR  = false positive rate 

GP  = general practitioner 

MPA  = memetic pattern-based algorithm 

NLR  = negative likelihood ratio 

NPV  = negative predictive value 

PET  = positron emission tomography 

PLR  = positive likelihood ratio 

PPPM  = predictive, preventive, and personalized medicine 

PPV  = positive predictive value 

PTP  = pre-test probability 

ROC  = receiver operating characteristic 

SD  = standard deviation 

  



 5 

Introduction 

Coronary artery disease (CAD) is frequent and accounts for significant morbidity, mortality, 

and health care costs1. Multiple tests are available for diagnosis and risk stratification, but they 

are either not sufficiently accurate, invasive in nature, and/or expensive. The prevalence of 

CAD/myocardial ischemia in patients referred for testing declined over the last decades. Hence, 

low risk test results have consequently increased from around 30% to 80% between 1992 and 

20122. Consequently, the proportion of normal test results is often reported to be around 60-

70% which may lead to unnecessary radiation exposure for patients and high health care costs3-

5. Given the large number of patients who need testing opposed to limited resources and 

potential risks of individual tests6, only selected patients should be referred for specific 

advanced testing and an personalized preselection prior to testing is becoming more important.  

Current preselection tools 

As recommended by the current guidelines, patients with suspected CAD are referred for 

further testing depending on their individual pre-test probability (PTP). Since PTP significantly 

affects the chosen test’s performance, it is advised to use PTP tools prior to referral7-10. 

European and American Cardiology Societies recommend in their current guidelines to estimate 

the PTP of CAD applying three basic variables (symptoms, age and sex) in easy-to-use tables8,9. 

Until 2021, the American guidelines recommended to use data from the historic landmark study 

from Diamond-Forrester (DF) in 197911. Since PTP with DF tended to overestimate prevalence, 

especially in women, Genders et al. updated and recalibrated the score in 201112. This formed 

the basis for a score included in the ESC 2013 guidelines on chronic coronary syndromes10. In 

the latest guidelines (ESC 2019 and ACC 2021), PTP estimation is now based on the CAD 

prevalence of contemporary, predominantly CT coronary angiography cohorts13.  

Despite accounting for the lower prevalence of CAD in patients tested nowadays, these tables 

do not offer PTP calculation above 52%. Hence, all patients with a PTP ≥ 15% should be tested 

non-invasively and a direct referral to invasive angiogram is not intended based on the PTP. 

Therefore, these tools are not helpful to reduce unnecessary tests and identify patients who 

could be deferred from functional testing.  

Despite the recommended PTP tables’ ease of use, three variables cannot sufficiently assess an 

individual patient because they do not comprehensively incorporate variables from different 

patient domains such as vitals, ECG and biomarkers. Consequently, these tools are of limited 

value to preselect patients before advanced cardiac testing.  
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Artificial intelligence to improve preselection of patients in a PPPM framework 

Hence, there is a need to improve patient selection towards a more predictive, preventive and 

personalized medicine (PPPM)14. Instead of the “one fits all” concept of these easy-to-use tools, 

novel models using artificial intelligence (AI) can incorporate widely and easily available 

variables and account for non-linear relationships and higher-order interactions between 

variables15. The factors in the AI models are not seen as independent individual values, but are 

recognized as patterns derived by a combinatorial analysis of the individual profile of each 

patient. Hence, it is not surprising, that such models exceed traditional PTP tools16-18. Data on 

AI tools to predict ischemia in comparison to PTP tools are scarce18,19. These tools might 

improve individual PTP assessment further in the direction of PPPM. However, sufficient 

clinical validation is often missing for such models. 

Working hypothesis 

Our group has developed and validated a memetic pattern-based algorithm (MPA)-based 

artificial intelligence tool to detect CAD as defined by invasive angiogram16,17,20. However, in 

the post-ISCHEMIA trial era21, detection and prediction of ischemia is gaining more and more 

importance compared to isolated anatomical description of luminal narrowing. Our approach 

has not yet been tested and validated to detect ischemia.  

Hence, the aims of this study were to examine whether this novel AI approach excels the 

existing, state-of-the-art PTP scores of CAD for patient preselection and to validate this 

approach for the prediction of ischemia in patients referred for non-invasive testing.  

If this tool worked, it could exclude (or predict) ischemia for an individual patient based on 

readily available variables. It could improve patient preselection (who needs further testing and 

who not) and thus prevent certain patients from unnecessary radiation exposure. Implemented 

in clinical routine, it could improve personalization of medical services by optimizing and 

individualizing preselection of patients and triaging them to the test they ideally need.  

 

Methods 

Study design and patient selection 

Consecutive patients referred for a Rubidium-82 Positron Emission Tomography (PET) scan at 

a tertiary centre (University Hospital Basel) between July 2018 and February 2022 were 

identified and invited to participate in this prospective cohort study. If patients consented for 
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the use of their clinical data and an additional blood sample, they were included for this project 

(n = 2417). The study flow is illustrated in Figure S1. 

Baseline characteristics (cardiovascular risk factors, vital signs, ECG, medication) were 

collected from a detailed questionnaire filled out by the physician in charge. The study was 

carried out according to the principles of the Declaration of Helsinki and was approved by the 

local ethics committee (Ethikkommission der Nordwest- und Zentralschweiz EKNZ (ethics 

committee of north western and central Switzerland, project ID: PB_2018-00076/EK 67/08).  

A literature search on PUBMED using the items “artificial intelligence”, “ischemia”, 

“prediction”, “patient stratification”, “PET” and “pretest probability” was performed with the 

AND function.  

 

Imaging protocol and analysis 

Imaging protocols were used as described before4,22. In short, patients were instructed to 

withhold caffeine-containing products for 24h before the test. For the PET study a 3D-PET/CT 

scanner was used (Biograph mCT, Siemens Healthineers, Erlangen, Germany). A low-dose CT 

scan was obtained for attenuation correction (increment 0.6 mm, soft-tissue reconstruction 

kernel, 120 keV, CAREDOSE 4D).  

Thereafter, 82Rb was intravenously injected in a weight-adjusted manner for rest and stress 

images (<100kg: 1110 MBq (30 mCi), ≥100kg 1480 MBq (40 mCi)). Rest was always 

performed first. After resting imaging acquisition, patients were pharmacologically stressed 

with adenosine (140 µg/kg/min for 6 minutes). If contraindications (mostly allergic asthma) or 

personal preferences were present, Regadenoson was used instead (400 µg single-dose). 

Patients were monitored according to current guidelines23. 

Dynamic, ECG-gated PET images were recorded for rest and stress over 7 minutes in list mode 

starting with tracer injection and then reconstructed as described in the supplement. ECG-gated 

images were analysed using QGS-QPS software included in the SyngoVia package (Siemens).  

Images were analysed and interpreted by an experienced board-certified nuclear medicine 

physician and cardiologist as a joint read reaching consensus. A visual semi-quantitative 17-

segment model with a 5-point scale (0: normal tracer uptake, 4: no tracer uptake) was used to 

calculate summed stress (SSS), rest (SRS) and difference score (SDS=SSS - SRS). An SDS ≥2 

was considered as threshold for ischemia.  



 8 

Calculation of pre-test probability 

As published in the corresponding guidelines (ACC 20127, ESC 201310, ACC 20218, ESC 

20199), the respective proposed tables were used to calculate PTP based on the available clinical 

information (symptoms, age and sex).  

Subsequently, the memetic pattern-based algorithm (MPA) was compared against the above-

mentioned PTP scores. With the available clinical data, laboratory and ECG, this software tool 

calculates the probability of having CAD using the MPA. This multilayer non-linear complex 

classifier was derived from an evolutionary learning optimisation process using and combining 

optimal parameterisation of different methods including pattern recognition and machine 

learning. Initially developed in the BASEL study20, it was further validated in a high-risk 

(LURIC17) and a low-to-intermediate risk cohort16.  

The model includes the following variables: age, sex, weight, height, presence and type of chest 

pain, diabetes, nicotine use, pathological Q-waves on ECG, systolic and diastolic blood 

pressure, relevant medication (like statin use), and biomarkers: mean corpuscular haemoglobin 

concentration, white blood cells, urea, uric acid, high-sensitivity cardiac troponin T, glucose, 

total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, 

alanine aminotransferase, alkaline phosphatase, amylase, total protein, albumin, and bilirubin.  

Based on these variables, the MPA model provides a numerical value between 0-100, which 

does not directly translate into PTP. The value is then used to allocate patients to one out of 

five PTP categories (very low to very high PTP). The calibration strongly depends on the setting 

(expected prevalence of CAD) in which the model is used. For this publication, we used the 

original calibration derived from the first external validation (LURIC17), and compared it also 

to the low-risk model16. PTP categories were defined as described in table 1.  

 

Statistical Analysis 

Normally distributed continuous variables are reported as mean  standard deviation (SD) and 

statistical testing was performed with unpaired t-test or ANOVA. Categorical variables are 

displayed using frequencies and percentages and were compared using the Chi-squared test or 

Fisher’s exact text where appropriate. A p-value <0.05 was considered as statistically 

significant.  

Endpoint was defined as ischemia (SDS ≥2). Sensitivity, specificity, positive and negative 

predictive value (PPV, NPV), positive and negative likelihood ratio (PLR, NLR), diagnostic 

odds ratio (DOR), and false negative as well as false positive rate (FNR, FPR) were calculated. 
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Receiver operating characteristic (ROC) analysis was performed to determine the area under 

the curve (AUC). Comparison between MPA model and other scores was performed using the 

DeLong method. For this calculation, a Bonferroni corrected p-value of <0.0125 ( = 0.05/4, 

given 4 comparisons) was considered significant. 

Statistical analyses were performed using SPSS™ (version 28.0.1.0) and RStudio (using R 

version 4.1.2). 

Results 

Patient population 

A total of 2417 patients were included for this study. Mean age was 66±11 years and 32% were 

female. Typical and atypical angina were reported in 21% and 23%, respectively. According to 

the four common PTP scores to assess the pre-test probability of CAD, the majority of patients 

had a predicted prevalence of CAD in the intermediate range of 15-85% (ACC 2012: 62.7%, 

ESC 2019: 65.5%, ACC 2012: 81.5%, ESC 2013: 90.2%). 1120 (46.3%) patients had known 

CAD. Ischemia was present in 897 (37.1%) patients. More detailed baseline characteristics of 

the patients are displayed in Table 2. 

 

Test performance of different pre-test probability tools 

The AUC of the MPA for ischemia was 0.758 (95%-CI 0.739 – 0.777), and significantly higher 

than the AUC of every other score tested (p <0.0001 each). The overall ROC curve and AUC 

values are depicted in Figure 1 and Table 4. The ESC 2019 and ACC 2021scores performed 

second and third best with an AUC of 0.673 and 0.667, respectively.  

 

Distribution of patients with ischemia according to PTP categories 

Not all scores allocated patients to all available five PTP categories, e.g. no very high PTP 

category in ACC 2021/ESC 2019 and no very low PTP category in ESC 2013. Certain 

categories entailed only a small proportion of the cohort (e.g. 1.2% in the very low PTP category 

with ACC 2021 score). Comparing the relative distribution of patients, the MPA model 

stratified patients more evenly over the five PTP categories as visually illustrated in Figure 2. 

The minimal and maximal proportion per category was 8.6% and 37.4%, compared to 0.0% 

and 69.3% in other scores. The proportion of patients in the 15-85% range was considerably 

lower with the MPA model (MPA 44.6%, ACC 2012 62.7%, ESC 2019 65.5%, ACC 2021 

81.5%, ESC 2013 90.2%, p <0.001 each) as summarised in Table 3. Only in the high and very 
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high PTP category the algorithm overestimated the true prevalence of ischemia. This finding 

was similar for all other scores.  

In the very low PTP category, the MPA model was the only tool, which correctly estimated 

ischemia prevalence to be <5%. Not only did the ACC 2012 and ACC 2021 scores slightly 

underestimate prevalence (5-7%), they also only allocated 1.2-1.4% of patients in this PTP 

category compared to 9.3% by the MPA algorithm. The ESC 2013 score was not able to allocate 

patients to the very low PTP category. The ESC 2019 score significantly underestimated true 

prevalence of ischemia (18% in the <5% PTP category).  

Apart from the MPA model, only the ESC 2013 score predicted ischemia correctly in the low 

PTP category. But, it allocated less than half of patients in this category than the MPA model 

(4.2% vs. 8.6%, respectively, p < 0.001).  

Combining the first two PTP categories (<15%), only the MPA model and ESC 2013 score 

predicted ischemia correctly (5.8% and 11.9%, respectively), but the MPA model was able to 

allocate >4 times more patients (17.9% vs. 4.2%, p < 0.001) correctly. 

 

Test characteristics to exclude ischemia on PET 

Test characteristics of the MPA model and the two ACC and ESC scores to exclude ischemia 

on PET are summarised in Table 5. Using the threshold <15% PTP, the MPA model showed 

an excellent test performance with a sensitivity of 97.3%, a NLR of 0.099 and a DOR of 13.390. 

Using the threshold <5%, the MPA’s sensitivity, NLR and DOR were 99.1%, 0.063 and 18.400, 

respectively.  

The MPA was the only score with a NLR below 0.1 which is regarded a good test for exclusion 

of a disease24. Furthermore, DOR was highest compared to the other scores suggesting best 

diagnostic accuracy.  

Test characteristics to detect ischemia on PET 

Only 3 scores predicted patients to have very high PTP (>85%) as shown in Table 5. None of 

the models had a PLR above 10, which would be necessary to be a good rule-in test. Overall, 

the MPA model had the highest diagnostic accuracy, but the ESC 2013 had a higher PLR and 

PPV. However, the ESC 2013 allocated significantly less patient in the very high PTP category 

(5.7% vs. 37.4%, p < 0.001). The ACC 2021 and ESC 2019 score did not provide PTP values 

above 52%.  
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Test characteristics in different subgroups 

In the subgroup analysis, the MPA model performed not as good as in the whole patient cohort, 

but still better compared to the other risk scores as shown in Table S1.  

The test characteristics of the analysed scores in different subgroups (with/without CAD, 

female/male patients) are depicted in Tables S2-4.  

The MPA discriminated better in patients with no CAD compared to prior CAD (higher AUC 

and DOR, lower NLR). Still, test characteristics of the MPA model were better compared to 

the other four scores. AUC was higher in female patients compared to male patients (0.770 vs. 

0.708). Using the thresholds of <15% and <5%, the MPA model had the highest DOR and 

lowest NLR in all subgroups tested.  

In all subgroups, diagnostic accuracy was best with the MPA, except for patients without CAD 

in whom DOR was higher with ESC 2013 when it comes to patients with very high PTP 

(however, less patients were allocated than with MPA).  

 

Correlation of MPA model score with ischemia 

With higher MPA model values, the prevalence of ischemia increases from 0% in the lowest 

group to 73.7% in the highest, which is visualised in Figure 3.  

Discussion 

The main findings of this study are: 1) The MPA model provided more accurate prediction of 

ischemia than the recommended PTP models (ESC 2013, ESC 2019, ACC 2012, ACC 2021). 

2) The MPA model was the only model which correctly identified patients with a very low 

likelihood of ischemia. 3) The MPA model improved stratification across the whole PTP 

spectrum and reduced the proportion of patients in the intermediate range of 15-85% PTP by 

28.9 % (ACC 2012) – 50.6% (ESC 2019). 4) The MPA model worked in patients without and 

with prior CAD, although it performed better in patients without prior CAD. Therefore, it 

should probably be used predominantly in patient cohorts without prior CAD. Hence, the MPA 

model is a useful tool to improve individualized assessment of pre-test probability and preselect 

patients for advanced cardiac testing. Furthermore, it could prevent patients with low 

probability of ischemia from unnecessary downstream tests, radiation exposure and costs. 

Therefore, it is a clear advancement in the direction of PPPM.  
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Current PTP tools are insufficient for patient preselection 

Despite their easy use, the traditional risk prediction tools have two significant limitations. First, 

they either classify a substantial number of patients to have PTP <15% with an insufficient 

sensitivity (80.8% - 90.7%) only (hence significantly underestimate the true prevalence), or 

they have an excellent sensitivity, but allocate a small proportion of patients in this PTP 

category only. Second, they allocate the majority of patients in the 15-85% range in which non-

invasive imaging is recommended. Consequently, they are not useful in reducing the number 

of unnecessary non-invasive testing.  

 

Comparison to earlier studies with the MPA model 

The MPA model may overcome these issues to a clinically relevant extent with a more even 

distribution across PTP categories while maintaining an excellent sensitivity, NPV, NLR, and 

FPR.  

The MPA model’s overall AUC of 0.758 was good24 and it performed clearly better compared 

to all other scores, also in the subgroup analyses. Still, the overall AUC was lower than reported 

in the earlier studies (original validation cohort Basel MPA 0.82420, LURIC validation 0.8717, 

Eurlings 0.8716). This is most likely because the algorithm was trained and validated in previous 

works to detect the anatomic presence of CAD documented by invasive coronary angiography 

but not ischemia. In the present study, detection of ischemia by PET was used. A coronary 

vessel with an anatomic stenosis of >50% as defined in the previous studies20 does not 

necessarily translate into ischemia. In a sub-study of the COURAGE trial, Shaw et al. showed 

that approximately 40% of patients with at least one ≥70% stenosis had no or minimal ischemia 

only25. In the FAME trial, coronary stenoses in the range of 50-70% and 71-90% were not 

functionally significant in 65% and 20%, respectively26. Hence, this fact may explain at least 

in part the lower discriminatory power in the current study using the endpoint of ischemia, if 

compared directly to the initial MPA studies. Similar findings apply for the ACC and ESC 

scores27,28.  

 

Performance of MPA model in subgroups 

Despite the model being developed and trained in a cohort of patients without prior CAD, the 

MPA algorithm also performed acceptable in the subgroups (e.g. prior CAD). The AUC of each 

subgroup was lower than the AUC of the overall model, except for female patients where it was 

even slightly higher. The fact that both groups (with/without prior CAD) had worse AUC than 

the overall population is most likely because factors attributing for “prior CAD” significantly 
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contribute to the model to estimate prevalence of CAD. The better AUC in female patients is 

probably because female patients had a lower prevalence of prior CAD.  

Overall, the AUC of the MPA model was higher than all the PTP- scores in each subgroup, 

highlighting the better discriminatory power and consistency of the test. Additionally, a higher 

MPA model score correlated well with the prevalence of ischemia. This may confirm the 

validity of this model also on a pathophysiological basis.  

 

Potential field of application 

A big advantage of the MPA algorithm is its ability to discriminate patients better across the 

whole spectrum of PTP, especially in the low and very low risk categories. It exceeded the other 

models to correctly identify patients who have a very low prevalence of ischemia. If a certain 

cut-off for post-test probability was clinically accepted to abstain from testing (e.g. 5% or 10%, 

as proposed by certain authors13), this algorithm could be used to omit non-invasive testing in 

a significant number of patients. 

The test characteristics to allocate patients in the very high-risk category (>85%) were not as 

good as on the other side of the spectrum. This was most likely due to over-estimation of actual 

prevalence of ischemia, which was also observed with the other scores27,28. This is most likely 

because all of them were developed and calibrated in cohorts where coronary artery disease 

was defined by luminal stenosis from an anatomical test (invasive angiography or computed 

tomography coronary angiography (CTCA)). As described above, significant luminal 

narrowing does not necessarily translate into ischemia. The clinical relevance of this slight 

overestimation of the prevalence of CAD appears insignificant since all of these high-risk 

patients need an advanced testing strategy anyway, be it non-invasive functional testing or an 

invasive angiogram. Hence, the MPA model is a better “rule-out” than “rule-in” test. Still, with 

the MPA’s false positive rate of 23.6%, this proportion is clearly below the prevalence of non-

obstructed coronary arteries on routine angiograms as reported in certain cohorts (62.4%)29.  

 

Comparison of study findings to published works 

Miller et al. described a similar approach in a large multi-centre, international registry with 

>20.000 patients19. They used patient specific data available prior to the scan and a machine 

learning based algorithm to predict an abnormal myocardial perfusion19. The AUC to predict 

an abnormal scan was 0.762 (95% CI 0.750 – 0.774), which was similar to our MPA algorithm 

(0.758, 95% CI 0.739 - 0.777). Using their ultra-high sensitive threshold (which is 

approximately equivalent to our low PTP threshold (PTP <15%)), test characteristics were 
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comparable (sensitivity: 96% vs. 97%, NPV: 95% vs. 95%, 15.5% vs. 17.9% of patients below 

threshold). But, our very low PTP threshold exceeded the described ultra-sensitive threshold 

with a sensitivity of 99% and NPV of 96%. However, comparability is limited because Miller 

et al. included two variables in their model (prior CAD and past myocardial infarction) which 

account for the major part of the model. Even without including these two important factors, 

our model outperformed the described model if the <5% cut-off is used. Furthermore, they did 

not include biomarkers and the endpoints differed significantly (SDS ≥2 on PET (this 

publication) vs. SSS ≥3 on SPECT (Miller)).  

In another study, Ismaeel and colleagues compared an artificial neural network (ANN) with 

two older PTP tools (Diamond Forrester, Morise) to predict ischemia18. Similar to our study, 

the AI model outperformed the PTP tools, had a better discriminator power and good test 

characteristics to rule out ischemia (sensitivity 91%, negative predictive value 98%). The AUC 

of the ANN model was slightly lower than our MPA model (0.7 vs. 0.76). Comparability with 

this small study (n = 486) is difficult, because they used PTP tools which are not recommended 

anymore in the guidelines, the endpoint ischemia was not well defined and two different 

functional tests (SPECT, stress echocardiography) were used, which are less sensitive and less 

specific than PET.  

 

Using the MPA model 

The test characteristics of a given model strongly depend on the prevalence of the disease. 

Hence, cut-off points need to be adjusted depending on the cohort being tested. Therefore, two 

different calibrations of the MPA model are available16,17,20 (MPA model and MPA model low 

risk; Table S5). Since these were calibrated in different cohorts with different prevalence of 

CAD, they use different cut-off points and must not be swapped interchangeably. As shown in 

Table S6, the MPA low risk model16 stratifies better in the high and very high-risk categories, 

but significantly underestimates ischemia prevalence in the low-risk category of the current 

study cohort.  

Therefore, in order to ensure accurate risk stratification using the MPA model, it is important 

to select the appropriate cut-off points depending on the clinical setting of the patient (e.g. as 

used for risk stratification or screening in a general practitioner’s (GP) office vs. a diagnostic 

test in patients referred to a cardiologist’s office or hospital).  

Despite better ischemia prediction in the very high PTP category (>85%) compared to the other 

scores, the MPA model performed best to exclude ischemia. It could be used as a gatekeeper to 

reduce costs while maintaining its excellent test characteristics (cut-off >15% PTP, sensitivity 
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97.3%, NPV 94.5%, NLR 0.099). Based on clinical information, biomarkers and ECG findings, 

it could be applied by primary care physicians to triage patients before they are referred for 

further downstream cardiac testing.  

 

Limitations 

Data from this project arise from a single centre. Images were analysed according to current 

guidelines by a small, steady, and experienced team of Cardiologists and Nuclear Medicine 

Specialists reaching consensus. Hence, data interpretation was performed in a standardised and 

homogeneous way.  

The four scores (ESC, ACC) were initially developed to assess pre-test probability of 

significant luminal stenosis in patients without prior CAD. We applied these scores in a mixed 

population with and without prior CAD which could limit the scores overall performance. 

However, we provide the subgroup analysis for both, patient with and patients without prior 

CAD.  

 

Conclusion and outlook 

The memetic pattern-based algorithm model outperformed traditional tools in the prediction of 

ischemia. It was the only tool which correctly estimated prevalence of ischemia in the very low 

PTP category (<5% PTP), and it excluded ischemia with an excellent sensitivity and negative 

predictive value. Furthermore, it allocated patients more evenly across all PTP categories and 

reduced the proportion of patients in the intermediate range (PTP 15-85%) by 29 % to 51%.  

 

1. Predictive approach: The MPA’s very high sensitivity (>99%) to detect ischemia and 

the ability to identify patients with a very low prevalence of ischemia has several 

important clinical implications. Patients at risk or with symptoms suspicious for CAD 

usually present at the GP’s office. The clinical assessment is often completed by ECG 

and laboratory workup. Subsequently, patients are referred to cardiologists and/or 

further downstream testing. With the described algorithm, “very low risk” patients could 

be easily and safely identified, and ischemia be excluded during the first GP visit using 

the already available data. Patients with elevated risk could be identified and sent for 

further testing. This predictive approach could provide a safe and reliable exclusion test 

to the GP and a precise, comprehensive assessment to the individual patients.  
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2.  Targeted prevention: Patients at risk according to the MPA model should be further 

evaluated and be referred for advanced cardiac testing. Moreover, the MPA model could 

prevent patients without ischemia from unnecessary radiation and stress agent exposure. 

3. Personalisation of medical services: Using the MPA model, the diagnostic pathway 

could be tailored to the individual patient. On one hand, this would include deferring 

patients without significant disease from cardiac tests. On the other hand, it would 

ensure that patients who benefit from advanced testing, will be tested.  

In addition, slots for functional test are limited. With the expected demographic changes, the 

demand for such tests is expected to rise. Instead of increasing testing capacities of these 

expensive tests (e.g. PET scan ~ 3000 Swiss Francs), the MPA model could be implemented as 

gatekeeper. This could reduce the number of normal scans and reduce healthcare costs on a 

population level. 

In summary, the MPA model offers a step towards a more predictive, preventive, and 

personalized medicine (PPPM). 
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Table 1: Definition of pre-test probability categories according to expected prevalence of CAD 

 

PTP category  ACC 2012 ACC 2021 ESC 2013 ESC 2019 MPA model 

Very low  0 - 5 % 0 - 5 % 0 - 5 % 0 - 5 % 0 - 12 

Low  5 - 15 % 5 - 15 % 5 - 15 % 5 - 15 % 12 - 32 

Medium  15 - 50 % 15 - 50 % 15 - 50 % 15 - 50 % 32 - 73 

High  50 - 85 % 50 - 85 % 50 - 85 % 50 - 85 % 73 - 82 

Very high  > 85 % > 85 % > 85 % > 85 % 82 - 100 

 

The table shows the commonly used definition of pre-test probability (PTP) category used for 

the ACC and ESC guideline derived scores. The calibration of the MPA model is based on the 

original external validation17 (which is described in more detail in the methods section).  
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Table 2: Baseline characteristics 

 

Table showing baseline characteristics of included patients stratified by sex. Values are 

displayed as mean (SD) or frequency (percentage). ANOVA and Chi-Square tests were used 

where appropriate. BMI: body mass index. CABG: coronary artery bypass graft. CAD: 

coronary artery disease. PCI: percutaneous coronary intervention.   

     

Variable 
All patients Male Female 

p-value 
n = 2417 n = 1653 n =764 

Age 66.1 (10.9) 65.6 (10.8) 67.1 (11.0) 0.001 

BMI [kg/m2] 28.0 (5.3) 28.1 (4.8) 27.8 (6.2) 0.162 

Q wave on ECG (%) 276 (11.4) 226 (13.7) 50 (6.5) <0.001 

Systolic blood pressure 125.4 (21.0) 122.9 (20.1) 130.8 (21.8) <0.001 

Diastolic blood pressure 69.5 (12.3) 68.8 (12.0) 71.1 (12.9) <0.001 

Symptoms (%)       <0.001 

   asymptomatic 1089 (45.1) 821 (49.7) 268 (35.1)  

   non-cardiac 269 (11.1) 165 (10.0) 104 (13.6)  

   atypical angina 549 (22.7) 338 (20.4) 211 (27.6)  

   typical angina 510 (21.1) 329 (19.9) 181 (23.7)  

Known CAD (%) 1120 (46.3) 921 (55.7) 199 (26.0) <0.001 

Prior myocardial infarction (%) 736 (30.5) 611 (37.0) 125 (16.4) <0.001 

Prior CABG (%) 314 (13.0) 273 (16.5) 41 (5.4) <0.001 

Prior PCI (%) 890 (36.8) 729 (44.1) 161 (21.1) <0.001 

Risk factors         

Arterial hypertension (%) 866 (35.8) 609 (36.8) 257 (33.6) 0.138 

Hypercholesterolemia (%) 804 (33.3) 581 (35.1) 223 (29.2) 0.004 

Diabetes (%) 585 (24.2%) 447 (27.0%) 138 (18.1%) <0.001 

Smoker (%) 1468 (60.7) 1110 (67.2) 358 (46.9) <0.001 

Family history (%) 240 (9.9) 161 (9.7) 79 (10.3) 0.7 

Medication         

Platelet inhibitor (%) 1404 (58.1) 1058 (64.0) 346 (45.3) <0.001 

Antihypertensive medication (%) 1525 (63.1) 1118 (67.6) 407 (53.3) <0.001 

   Betablocker (%) 1199 (49.6) 903 (54.6) 296 (38.7) <0.001 

   Entresto (%) 39 (1.6) 32 (1.9) 7 (0.9) 0.094 

   ACE inhibitor (%) 372 (15.4) 283 (17.1) 89 (11.6) 0.001 

   AT2 blocker (%) 334 (13.8) 227 (13.7) 107 (14.0) 0.907 

Lipid-lowering therapy (%) 1568 (64.9) 1180 (71.4) 388 (50.8) <0.001 

   Statin (%) 1551 (64.2) 1173 (71.0) 378 (49.5) <0.001 

   Ezetimib (%) 187 (7.7) 148 (9.0) 39 (5.1) 0.001 

   PCSK9-Inhibitor (%) 10 (0.4) 5 (0.3) 5 (0.7) 0.361 

Amiodarone (%) 19 (0.8) 17 (1.0) 2 (0.3) 0.082 

Diuretic (%) 781 (32.3) 553 (33.5) 228 (29.8) 0.086 

Nitroglycerin (%) 127 (5.3) 91 (5.5) 36 (4.7) 0.475 

Risk Scores         

   ACC 2012 44.1 (29.3) 47.1 (28.8) 37.7 (29.2) <0.001 

   ACC 2021 28.8 (12.9) 34.2 (11.2) 16.9 (6.8) <0.001 

   ESC 2013 48.4 (21.1) 55.8 (17.8) 32.5 (18.8) <0.001 

   ESC 2019 20.9 (12.2) 25.0 (11.8) 12.0 (7.2) <0.001 
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Table 3: Comparison of the MPA model with four common pre-test probability scores 

Estimated PTP  ACC 2012 ACC 2021 ESC 2013 ESC 2019 MPA model 

Very low 
 5.7% 6.7% n.a. 18.0% 4.0% 

 (1.4%) (1.2%) (0.0%) (6.2%) (9.3%) 

Low 
 21.6% 19.7% 11.9% 21.3% 7.7% 

 (16.5%) (17.3%) (4.2%) (28.3%) (8.6%) 

Medium 
 42.0% 38.1% 27.9% 43.9% 27.6% 

 (40.8%) (69.3%) (50.9%) (59.8%) (32.0%) 

High 
 34.5% 59.7% 47.7% 65.7% 36.7% 

 (21.8%) (12.2%) (39.2%) (5.7%) (12.6%) 

Very high 
 45.4% n.a. 65.7% n.a. 60.4% 

 (19.4%) (0.0%) (5.7%) (0.0%) (37.4%) 

       

Observed ischemia 

prevalence 
 < 5% 5-15% 15-50% 50-85% > 85% 

 

Table indicating the distribution of patients within their predicted pre-test probability (PTP) 

category according to four common PTP scores and the MPA model. The percentage at the top 

of the table cell indicates the observed prevalence of ischemia within each category and is color-

coded. The percentage at the bottom of the cell in parentheses represent the percentage of 

patients in the corresponding category.  
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Table 4: Comparison of test performance 

 

Model AUC LL 95% CI UL 95% CI 

MPA model 0.758 0.739 0.777 

ACC 2012 0.585 0.562 0.608 

ACC 2021 0.667 0.645 0.689 

ESC 2013 0.661 0.639 0.683 

ESC 2019 0.673 0.651 0.695 

 

The table indicates the area under the curve (AUC) of different pre-test probability scores for 

the prediction of ischemia. CI: confidence interval. LL: lower limit. UL: upper limit:  
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Table 5: Test characteristics of the MPA model compared to four common pre-test probability scores 

 

 Sensitivity Specificity NPV PPV PLR NLR DOR FNR FPR n = % patients 

low PTP (<15%)            

MPA model 97.3% 26.9% 94.5% 44.0% 1.332 0.099 13.390 2.7% 73.1% 433 17.9% 

ACC 2012 90.2% 22.7% 79.7% 40.8% 1.167 0.432 2.699 9.8% 77.3% 433 17.9% 

ACC 2021 90.7% 23.9% 81.4% 41.3% 1.193 0.386 3.088 9.3% 76.1% 447 18.5% 

ESC 2013 98.7% 5.9% 88.1% 38.2% 1.048 0.228 4.587 1.3% 94.1% 101 4.2% 

ESC 2019 80.8% 43.6% 79.4% 45.8% 1.432 0.440 3.252 19.2% 56.4% 834 34.5% 

very low PTP (<5%)           

MPA model 99.1% 14.2% 96.4% 40.5% 1.155 0.063 18.400 0.9% 85.8% 224 9.3% 

ACC 2012 99.8% 2.2% 94.3% 37.6% 1.020 0.103 9.931 0.2% 97.8% 35 1.4% 

ACC 2021 99.8% 1.8% 93.3% 37.5% 1.016 0.121 8.398 0.2% 98.2% 30 1.2% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 97.0% 8.1% 82.0% 38.4% 1.055 0.372 2.837 3.0% 91.9% 150 6.2% 

very high PTP (>85%)            

MPA model 61.0% 76.4% 76.9% 60.4% 2.589 0.510 5.073 39.0% 23.6% 905 37.4% 

ACC 2012 23.7% 83.2% 64.9% 45.4% 1.410 0.917 1.538 76.3% 16.8% 469 19.4% 

ACC 2021 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2013 10.0% 96.9% 64.6% 65.7% 3.245 0.928 3.495 90.0% 3.1% 137 5.7% 

ESC 2019 NA NA NA NA NA NA NA NA NA 0 0.0% 

 

The table indicates test characteristics of the MPA model and four commonly used pre-test probability scores. Three different cut-offs were defined 

(low: <15% PTP, very low: <5% PTP, very high: >85% PTP). DOR: diagnostic odds ratio. FNR: false negative rate. FPR: false positive rate. NLR: 

negative likelihood ratio. NPV: negative predictive value. PLR: positive likelihood ratio. PPV: positive predictive value. PTP: pre-test probability. 
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Figure legends 

Figure 1: ROC-curve of different models to predict ischemia on PET 

 

Figure 2: Distribution of patients across pre-test probability categories depending on the risk 

score used 

 

Figure 3: Prevalence of ischemia stratified by MPA model  
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Figure 1: ROC-curve of different models to predict ischemia on PET 

 

The figure shows the receiver operating characteristic (ROC) curves of 5 different scores to 

predict ischemia on PET. The MPA model has a statistically significant higher AUC (p < 

0.0001). 
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Figure 2: Distribution of patients across pre-test probability categories depending on the risk 

score used 

 

 
 

The bar chart indicates the proportion of patients within the corresponding pre-test probability 

(PTP) category. The MPA model stratifies more evenly across all five PTP categories.  
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Figure 3: Prevalence of ischemia stratified by MPA model  

 

 

The figure indicates the relative proportion if ischemia in PET depending on the value derived 

from the MPA model. The higher the MPA value, the more likely a patient has ischemia. 

 

 

 



Supplemental materials 

 

PET image reconstruction details: 

For reconstruction, an ordered subset expectation maximization algorithm (OSEM, matrix 

512 x 512, 3 iterations, 21 subsets, gauss-filtering, 8 mm full-width half-maximum) was used 

for static and dynamic images. Random, scatter, attenuation and decay corrections were 

automatically applied to the emission data. Automatic motion correction was enabled. The 

following framesets were used for reconstruction of dynamic images: 1s delay, 12x10 s, 4x30 

s, 1x60 s, 1x120s. The last four minutes of acquisition were used for reconstruction of all 

images (static and ECG-gated). 

  



Supplement Table S1: Comparison of test performance in different subgroups 

 

Risk model AUC LL 95% CI UL 95% CI 

no CAD (n = 1297) 

MPA model 0.725 0.693 0.757 

ACC 2012 0.599 0.561 0.637 

ACC 2021 0.667 0.630 0.703 

ESC 2013 0.678 0.642 0.713 

ESC 2019 0.686 0.650 0.722 

known CAD (n = 1120) 

MPA model 0.652 0.619 0.684 

ACC 2012 0.555 0.521 0.589 

ACC 2021 0.603 0.569 0.636 

ESC 2013 0.599 0.566 0.633 

ESC 2019 0.610 0.576 0.643 

male patients (n = 1653) 

MPA model 0.708 0.683 0.733 

ACC 2012 0.573 0.546 0.601 

ACC 2021 0.597 0.570 0.625 

ESC 2013 0.613 0.586 0.640 

ESC 2019 0.622 0.595 0.649 

female patients (n = 764) 

MPA model 0.770 0.729 0.810 

ACC 2012 0.528 0.476 0.581 

ACC 2021 0.539 0.484 0.593 

ESC 2013 0.584 0.533 0.635 

ESC 2019 0.585 0.534 0.637 

 

The table indicates the area under the curve (AUC) of different pre-test probability scores for 

the prediction of ischemia in different subgroups. CI: confidence interval. LL: lower limit. 

UL: upper limit: SE: standard error.  



Supplemental Table S2: Test characteristics of the MPA model compared to four common pre-test probability scores in different subgroups (cut-off: 

low risk <15%) 

 Sensitivity Specificity NPV PPV PLR NLR DOR FNR FPR n = % patients 

all patients (n = 2417) 

MPA model 97.3% 26.9% 94.5% 44.0% 1.332 0.099 13.390 2.7% 73.1% 433 17.9% 

ACC 2012 90.2% 22.7% 79.7% 40.8% 1.167 0.432 2.699 9.8% 77.3% 433 17.9% 

ACC 2021 90.7% 23.9% 81.4% 41.3% 1.193 0.386 3.088 9.3% 76.1% 447 18.5% 

ESC 2013 98.7% 5.9% 88.1% 38.2% 1.048 0.228 4.587 1.3% 94.1% 101 4.2% 

ESC 2019 80.8% 43.6% 79.4% 45.8% 1.432 0.440 3.252 19.2% 56.4% 834 34.5% 

without CAD (n = 1297) 

MPA model 93.3% 36.6% 95.7% 26.2% 1.470 0.185 7.965 6.7% 63.4% 399 30.8% 

ACC 2012 86.9% 26.7% 89.4% 22.2% 1.186 0.490 2.417 13.1% 73.3% 312 24.1% 

ACC 2021 87.7% 28.9% 90.7% 22.9% 1.233 0.426 2.898 12.3% 71.1% 333 25.7% 

ESC 2013 98.4% 7.7% 95.2% 20.4% 1.066 0.207 5.140 1.6% 92.3% 84 6.5% 

ESC 2019 79.8% 49.3% 91.0% 27.5% 1.573 0.411 3.830 20.2% 50.7% 566 43.6% 

with CAD (n = 1120) 

MPA model 98.9% 5.7% 79.4% 58.7% 1.049 0.191 5.493 1.1% 94.3% 34 3.0% 

ACC 2012 91.5% 13.9% 54.5% 59.1% 1.062 0.614 1.731 8.5% 86.1% 121 10.8% 

ACC 2021 91.9% 13.1% 54.4% 58.9% 1.057 0.618 1.712 8.1% 86.9% 114 10.2% 

ESC 2013 98.8% 1.9% 52.9% 57.8% 1.007 0.655 1.538 1.2% 98.1% 17 1.5% 

ESC 2019 81.2% 30.9% 54.9% 61.5% 1.176 0.606 1.941 18.8% 69.1% 268 23.9% 

male (n = 1653) 

MPA model 98.8% 10.9% 91.6% 48.1% 1.109 0.110 10.070 1.2% 89.1% 107 6.5% 

ACC 2012 98.0% 4.9% 74.6% 46.2% 1.030 0.408 2.523 2.0% 95.1% 59 3.6% 

ACC 2021 98.3% 3.7% 71.7% 46.0% 1.020 0.472 2.161 1.7% 96.3% 46 2.8% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 88.8% 23.4% 71.5% 49.2% 1.160 0.477 2.432 11.2% 76.6% 295 17.8% 

female (n = 764) 

MPA model 89.7% 50.2% 95.4% 29.7% 1.802 0.206 8.751 10.3% 49.8% 326 42.7% 

ACC 2012 49.7% 48.6% 80.5% 18.5% 0.967 1.035 0.934 50.3% 51.4% 374 49.0% 

ACC 2021 51.7% 53.5% 82.5% 20.7% 1.112 0.903 1.231 48.3% 46.5% 401 52.5% 

ESC 2013 91.7% 14.4% 88.1% 20.1% 1.071 0.576 1.861 8.3% 85.6% 101 13.2% 

ESC 2019 39.3% 72.9% 83.7% 25.3% 1.448 0.833 1.739 60.7% 27.1% 539 70.5% 

Table indicates test characteristics of the MPA model and four commonly used pre-test probability scores. Cut-off was defined as low PTP (<15%). 

CAD: coronary artery disease. DOR: diagnostic odds ratio. FNR: false negative rate. FPR: false positive rate. NLR: negative likelihood ratio. NPV: 

negative predictive value. PLR: positive likelihood ratio. PPV: positive predictive value. PTP: pre-test probability. 



Supplemental Table S3: Test characteristics of the MPA model compared to four common pre-test probability scores in different subgroups (cut-off: 

very low risk <5%) 

 Sensitivity Specificity NPV PPV PLR NLR DOR FNR FPR n = % patients 

all patients (n = 2417) 

MPA model 99.1% 14.2% 96.4% 40.5% 1.155 0.063 18.400 0.9% 85.8% 224 9.3% 

ACC 2012 99.8% 2.2% 94.3% 37.6% 1.020 0.103 9.931 0.2% 97.8% 35 1.4% 

ACC 2021 99.8% 1.8% 93.3% 37.5% 1.016 0.121 8.398 0.2% 98.2% 30 1.2% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 97.0% 8.1% 82.0% 38.4% 1.055 0.372 2.837 3.0% 91.9% 150 6.2% 

without CAD (n = 1297) 

MPA model 98.0% 19.7% 97.6% 22.7% 1.221 0.101 12.120 2.0% 80.3% 211 16.3% 

ACC 2012 99.6% 3.0% 96.9% 19.8% 1.026 0.134 7.674 0.4% 97.0% 32 2.5% 

ACC 2021 99.6% 2.7% 96.6% 19.8% 1.023 0.148 6.911 0.4% 97.3% 29 2.2% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 97.6% 9.8% 94.4% 20.7% 1.082 0.244 4.435 2.4% 90.2% 108 8.3% 

with CAD (n = 1120) 

MPA model 99.5% 2.1% 76.9% 58.0% 1.017 0.221 4.602 0.5% 97.9% 13 1.2% 

ACC 2012 99.8% 0.4% 66.7% 57.7% 1.003 0.368 2.723 0.2% 99.6% 3 0.3% 

ACC 2021 99.8% 0.0% 0.0% 57.6% 0.998 NA NA 0.2% 100.0% 1 0.1% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 96.7% 4.4% 50.0% 57.9% 1.012 0.736 1.374 3.3% 95.6% 42 3.8% 

male (n = 1653) 

MPA model 99.7% 5.2% 95.9% 46.8% 1.052 0.051 20.630 0.3% 94.8% 49 3.0% 

ACC 2012 99.9% 1.0% 90.0% 45.7% 1.009 0.133 7.577 0.1% 99.0% 10 0.6% 

ACC 2021 99.7% 1.2% 84.6% 45.7% 1.010 0.218 4.635 0.3% 98.8% 13 0.8% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 97.9% 5.1% 74.2% 46.3% 1.031 0.417 2.475 2.1% 94.9% 62 3.8% 

female (n = 764) 

MPA model 95.9% 27.3% 96.6% 23.6% 1.319 0.152 8.700 4.1% 72.7% 175 22.9% 

ACC 2012 99.3% 3.9% 96.0% 19.5% 1.033 0.178 5.808 0.7% 96.1% 25 3.3% 

ACC 2021 100.0% 2.7% 100.0% 19.4% 1.028 NA NA 0.0% 97.3% 17 2.2% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 92.4% 12.4% 87.5% 19.8% 1.055 0.610 1.731 7.6% 87.6% 88 11.5% 

Table indicates test characteristics of the MPA model and four commonly used pre-test probability scores. Cut-off was defined as very low PTP 

(<5%). CAD: coronary artery disease. DOR: diagnostic odds ratio. FNR: false negative rate. FPR: false positive rate. NLR: negative likelihood ratio. 

NPV: negative predictive value. PLR: positive likelihood ratio. PPV: positive predictive value. PTP: pre-test probability. 



Supplemental Table S4: Test characteristics of the MPA model compared to four common pre-test probability scores in different subgroups (cut-off: very 

high risk >85%) 

 Sensitivity Specificity NPV PPV PLR NLR DOR FNR FPR n = % patients 

all patients (n = 2417) 

MPA model 61.0% 76.4% 76.9% 60.4% 2.589 0.510 5.073 39.0% 23.6% 905 37.4% 

ACC 2012 23.7% 83.2% 64.9% 45.4% 1.410 0.917 1.538 76.3% 16.8% 469 19.4% 

ACC 2021 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2013 10.0% 96.9% 64.6% 65.7% 3.245 0.928 3.495 90.0% 3.1% 137 5.7% 

ESC 2019 NA NA NA NA NA NA NA NA NA 0 0.0% 

without CAD (n = 1297) 

MPA model 32.9% 87.9% 84.5% 39.7% 2.732 0.763 3.582 67.1% 12.1% 209 16.1% 

ACC 2012 26.6% 83.6% 82.5% 28.2% 1.625 0.878 1.851 73.4% 16.4% 238 18.4% 

ACC 2021 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2013 7.9% 98.0% 81.5% 48.8% 3.949 0.940 4.204 92.1% 2.0% 41 3.2% 

ESC 2019 NA NA NA NA NA NA NA NA NA 0 0.0% 

with CAD (n = 1120) 

MPA model 71.9% 51.2% 57.3% 66.7% 1.473 0.549 2.685 28.1% 48.8% 696 62.1% 

ACC 2012 22.6% 82.1% 43.9% 63.2% 1.265 0.942 1.342 77.4% 17.9% 231 20.6% 

ACC 2021 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2013 10.9% 94.5% 43.8% 72.9% 1.983 0.943 2.102 89.1% 5.5% 96 8.6% 

ESC 2019 NA NA NA NA NA NA NA NA NA 0 0.0% 

male (n = 1653) 

MPA model 69.3% 63.0% 71.1% 61.0% 1.875 0.487 3.847 30.7% 37.0% 854 51.7% 

ACC 2012 23.7% 83.4% 56.7% 54.3% 1.422 0.916 1.553 76.3% 16.6% 328 19.8% 

ACC 2021 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2013 12.0% 94.8% 56.3% 65.7% 2.294 0.929 2.470 88.0% 5.2% 137 8.3% 

ESC 2019 NA NA NA NA NA NA NA NA NA 0 0.0% 

female (n = 764) 

MPA model 17.9% 96.0% 83.3% 51.0% 4.440 0.855 5.191 82.1% 4.0% 51 6.7% 

ACC 2012 24.1% 82.9% 82.3% 24.8% 1.410 0.915 1.540 75.9% 17.1% 141 18.5% 

ACC 2021 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2013 NA NA NA NA NA NA NA NA NA 0 0.0% 

ESC 2019 NA NA NA NA NA NA NA NA NA 0 0.0% 

Table indicates test characteristics of the MPA model and four commonly used pre-test probability scores. Cut-off was defined as very high risk 

(>85%). CAD: coronary artery disease. DOR: diagnostic odds ratio. FNR: false negative rate. FPR: false positive rate. NLR: negative likelihood ratio. 

NPV: negative predictive value. PLR: positive likelihood ratio. PPV: positive predictive value. PTP: pre-test probability. 



Supplement Table S5: Definition of pre-test probability categories depending on MPA 

calibration 

 

PTP category   MPA model 
MPA model 

low risk 

Very low  0 - 12 0 - 12 

Low  12 - 32 12 - 71 

Medium  32 - 73 71 - 87 

High  73 - 82 87 - 92 

Very high  82 - 100 92 - 100 

 

The table indicates the numerical ranges of the pre-test probability category which differ 

between the two different MPA calibrations. PTP: pre-test probability. 

  



Supplement Table S6: Comparison of the two different MPA calibrations 

 

Predicted PTP   MPA model 
MPA model 

low risk  
Prevalence 

 Ischemia 

Very low 
  4.0% 4.0%  

< 5% 
  (9.3%) (9.3%)  

Low 
  7.7% 22.3%  

5-15% 
  (8.6%) (38.6%)  

Medium 
  27.6% 46.1%  

15-50% 
  (32.0%) (28.4%)  

High 
  36.7% 53.0%  

50-85% 
  (12.6%) (11.0%)  

Very high 
  60.4% 72.9%  

> 85% 
  (37.4%) (12.7%)  

 

The table compares the distribution of patients within their estimated pre-test probability 

category between the original calibration1 and the low-risk population calibration2. The very 

low PTP category was identical, but discrimination in the low and medium PTP category was 

clearly better if the original MPA calibration was used in this patient cohort. The percentage 

indicates the prevalence of ischemia within each category and is color-coded according to the 

displayed values. Values in parentheses represent the percentage of patients in the 

corresponding category. 

  



Supplement Figure S1: Patient flow 

 

 
 

Figure illustrates the patient flow.  
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